Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.261
Filter
1.
Nature ; 614(7947): 334-342, 2023 02.
Article in English | MEDLINE | ID: mdl-36697826

ABSTRACT

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Tolerance , Lipopolysaccharide Receptors , Lipopolysaccharides , Liver , Myeloid Cells , Humans , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Tolerance/drug effects , Immune Tolerance/immunology , Liver/drug effects , Liver/immunology , Liver/pathology , Liver/virology , Interleukin-2/biosynthesis , Interleukin-2/immunology , Chemotaxis, Leukocyte , Bacteria/immunology , Intestines/immunology , Intestines/microbiology
2.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35699942

ABSTRACT

Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.


Subject(s)
Interleukin-2 , Killer Cells, Natural , T-Lymphocytes, Regulatory , Animals , Immunity, Innate , Interleukin-2/biosynthesis , Interleukin-2/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
3.
J Immunol ; 208(5): 1155-1169, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110421

ABSTRACT

CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Interleukin-2/biosynthesis , Receptors, Interleukin-7/biosynthesis , Repressor Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Chromatin Immunoprecipitation , DNA Transposable Elements/genetics , Gene Deletion , Gene Silencing , Histones/genetics , Humans , Interleukin-2/metabolism , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Repressor Proteins/genetics
4.
Sci Immunol ; 7(68): eabl6322, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148200

ABSTRACT

Here, we show that the capacity to manufacture IL-2 identifies constituents of the expanded CD8 T cell effector pool that display stem-like features, preferentially survive, rapidly attain memory traits, resist exhaustion, and control chronic viral challenges. The cell-intrinsic synthesis of IL-2 by CD8 T cells attenuates the ability to receive IL-2-dependent STAT5 signals, thereby limiting terminal effector formation, endowing the IL-2-producing effector subset with superior protective powers. In contrast, the non-IL-2-producing effector cells respond to IL-2 signals and gain effector traits at the expense of memory formation. Despite having distinct properties during the effector phase, IL-2-producing and nonproducing CD8 T cells appear to converge transcriptionally as memory matures to form populations with equal recall abilities. Therefore, the potential to produce IL-2 during the effector, but not memory stage, is a consequential feature that dictates the protective capabilities of the response.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-2/biosynthesis , STAT5 Transcription Factor/immunology , Animals , Interleukin-2/immunology , Mice , Mice, Congenic , Mice, Transgenic , Signal Transduction/immunology
5.
Science ; 375(6580): eabj4008, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113687

ABSTRACT

Regulation of cytokine production in stimulated T cells can be disrupted in autoimmunity, immunodeficiencies, and cancer. Systematic discovery of stimulation-dependent cytokine regulators requires both loss-of-function and gain-of-function studies, which have been challenging in primary human cells. We now report genome-wide CRISPR activation (CRISPRa) and interference (CRISPRi) screens in primary human T cells to identify gene networks controlling interleukin-2 (IL-2) and interferon-γ (IFN-γ) production. Arrayed CRISPRa confirmed key hits and enabled multiplexed secretome characterization, revealing reshaped cytokine responses. Coupling CRISPRa screening with single-cell RNA sequencing enabled deep molecular characterization of screen hits, revealing how perturbations tuned T cell activation and promoted cell states characterized by distinct cytokine expression profiles. These screens reveal genes that reprogram critical immune cell functions, which could inform the design of immunotherapies.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Gene Regulatory Networks , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Lymphocyte Activation , T-Lymphocytes/immunology , CRISPR-Associated Protein 9/genetics , Cell Line , Cells, Cultured , Gene Expression Regulation , Genome, Human , Humans , Interferon-gamma/genetics , Interleukin-2/genetics , NF-kappa B/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , T-Lymphocytes/metabolism
6.
Front Immunol ; 12: 750969, 2021.
Article in English | MEDLINE | ID: mdl-34858407

ABSTRACT

The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1ß, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus 3C Proteases/immunology , Cytokines/biosynthesis , NF-kappa B/metabolism , SARS-CoV-2/immunology , Sumoylation/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , HEK293 Cells , Humans , Immunity, Innate/immunology , Interleukin-1beta/biosynthesis , Interleukin-2/biosynthesis , Interleukin-6/biosynthesis , Signal Transduction/physiology , Sumoylation/drug effects , THP-1 Cells , Tumor Necrosis Factor-alpha/biosynthesis , Vero Cells
7.
Sci Immunol ; 6(65): eabe3981, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34826259

ABSTRACT

Helios, a member of the Ikaros family of transcription factors, is predominantly expressed in developing thymocytes, activated T cells, and regulatory T cells (Tregs). Studies in mice have emphasized its role in maintenance of Treg immunosuppressive functions by stabilizing Foxp3 expression and silencing the Il2 locus. However, its contribution to human immune homeostasis and the precise mechanisms by which Helios regulates other T cell subsets remain unresolved. Here, we investigated a patient with recurrent respiratory infections and hypogammaglobulinemia and identified a germline homozygous missense mutation in IKZF2 encoding Helios (p.Ile325Val). We found that HeliosI325V retains DNA binding and dimerization properties but loses interaction with several partners, including epigenetic remodelers. Whereas patient Tregs showed increased IL-2 production, patient conventional T cells had decreased accessibility of the IL2 locus and consequently reduced IL-2 production. Reduced chromatin accessibility was not exclusive to the IL2 locus but involved a variety of genes associated with T cell activation. Single-cell RNA sequencing of peripheral blood mononuclear cells revealed gene expression signatures indicative of a shift toward a proinflammatory, effector-like status in patient CD8+ T cells. Moreover, patient CD4+ T cells exhibited a pronounced defect in proliferation with delayed expression of surface checkpoint inhibitors, suggesting an impaired onset of the T cell activation program. Collectively, we identified a previously uncharacterized, germline-encoded inborn error of immunity and uncovered a cell-specific defect in Helios-dependent epigenetic regulation. Binding of Helios with specific partners mediates this regulation, which is ultimately necessary for the transcriptional programs that enable T cell homeostasis in health and disease.


Subject(s)
Germ Cells/immunology , Ikaros Transcription Factor/immunology , Adolescent , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Humans , Ikaros Transcription Factor/genetics , Interleukin-2/biosynthesis , Male , Mutation, Missense , T-Lymphocytes, Regulatory/immunology
8.
Clin Exp Immunol ; 206(3): 237-247, 2021 12.
Article in English | MEDLINE | ID: mdl-34559885

ABSTRACT

Mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1)-deficiency is a rare combined immunodeficiency characterized by recurrent infections, dermatitis and enteropathy. We herein investigate the immunological profiles of our patient and previously reported children with MALT1-deficiency. A mutation analysis was performed by targeted panel sequencing for primary immunodeficiency. Lymphocyte subset, activation and B cell differentiation were analyzed by flow cytometry and t-distributed stochastic neighbor embedding. Pneumocystis pneumonia developed in a 6-month-old Japanese infant with atopic dermatitis, enteritis and growth restriction. This infant showed agammaglobulinemia without lymphopenia. At 8 years of age, the genetic diagnosis of MALT1-deficiency was confirmed on a novel homozygous mutation of c.1102G>T, p.E368X. T cell stimulation tests showed impairments in the production of interleukin-2, phosphorylation of nuclear factor kappa B (NF-κB) p65 and differentiation of B cells. In combination with the literature data, we found that the number of circulatory B cells, but not T cells, were inversely correlated with the age of patients. The hematopoietic cell transplantation (HCT) successfully reconstituted the differentiation of mature B cells and T cells. These data conceptualize that patients with complete MALT1-deficiency show aberrant differentiation and depletion of B cells. The early diagnosis and HCT lead to a cure of the disease phenotype associated with the loss-of-function mutations in human CARD11.


Subject(s)
B-Lymphocytes/immunology , CARD Signaling Adaptor Proteins/genetics , Guanylate Cyclase/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/deficiency , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Severe Combined Immunodeficiency/genetics , T-Lymphocytes/immunology , Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , B-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Differentiation/immunology , Child , DNA Mutational Analysis , Humans , Interleukin-2/biosynthesis , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphopenia/diagnosis , Lymphopenia/genetics , Male , NF-kappa B/metabolism
9.
Angew Chem Int Ed Engl ; 60(48): 25468-25476, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34580976

ABSTRACT

A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Immunosuppressive Agents/pharmacology , Interferon-gamma/antagonists & inhibitors , Interleukin-2/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Terpenes/pharmacology , Humans , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/metabolism , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Lamiaceae/chemistry , Lamiaceae/metabolism , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/metabolism , Molecular Structure , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Terpenes/chemistry , Terpenes/metabolism
10.
Cell Physiol Biochem ; 55(4): 460-476, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34363385

ABSTRACT

BACKGROUND/AIMS: Cancer is the second most deadly disease in the world. The bladder cancer is one of the most aggressive types and shows a continuous increase in the number of cases. The use of bacteria as live vectors to deliver molecules directly to the tumor is a promising tool and has been used as an adjuvant treatment against several types of cancer. The aim of this study was to investigate the antitumor effect of Interleukin 2 (IL-2), TNF-related apoptosis-inducing ligand (TRAIL) and protein MIX against murine bladder cancer cells, lineage MB49. METHODS: The attenuated Salmonella strain SL3261 was transformed by inserting the IL-2 and TRAIL genes. The effects of proteins on cell viability (MTT method), cell morphology (optical microscopy), cell recovery (clonogenic assay), cell membrane (lactate dehydrogenase release - LDH), on oxidative stress pathway (levels of nitric oxide, NO) and apoptosis (flow cytometry and high resolution epifluorescence images) were evaluated at intervals of 24 and 48 hours of action. RESULTS: The results showed that there was a decrease in cell viability via damage to the cell membrane, alteration of cell morphology, non-recovery of cells, increase in the production of NO and incubate for of cells in the state of apoptosis in the two periods analyzed. CONCLUSION: The data presented suggest that IL-2, TRAIL and their MIX proteins in MB49 cells have cytotoxic potential and that this is associated with oxidative stress and apoptosis pathways. These results may contribute to the development of new therapeutic strategies for bladder cancer.


Subject(s)
Interleukin-2/immunology , Microorganisms, Genetically-Modified/immunology , Salmonella/immunology , TNF-Related Apoptosis-Inducing Ligand/immunology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Animals , Cell Line, Tumor , Interleukin-2/biosynthesis , Interleukin-2/genetics , Mice , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Salmonella/genetics , Salmonella/metabolism , TNF-Related Apoptosis-Inducing Ligand/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
11.
Biochem J ; 478(17): 3331-3349, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34435619

ABSTRACT

Co-signaling receptors for the T cell receptor (TCR) are important therapeutic targets, with blockade of co-inhibitory receptors such as PD-1 now central in immuno-oncology. Advancing additional therapeutic immune modulation approaches requires understanding ligand regulation of other co-signaling receptors. One poorly understood potential therapeutic target is TIM-3 (T cell immunoglobulin and mucin domain containing-3). Which of TIM-3's several proposed regulatory ligands is/are relevant for signaling is unclear, and different studies have reported TIM-3 as a co-inhibitory or co-stimulatory receptor in T cells. Here, we show that TIM-3 promotes NF-κB signaling and IL-2 secretion following TCR stimulation in Jurkat cells, and that this activity is regulated by binding to phosphatidylserine (PS). TIM-3 signaling is stimulated by PS exposed constitutively in cultured Jurkat cells, and can be blocked by mutating the PS-binding site or by occluding this site with an antibody. We also find that TIM-3 signaling alters CD28 phosphorylation. Our findings clarify the importance of PS as a functional TIM-3 ligand, and may inform the future exploitation of TIM-3 as a therapeutic target.


Subject(s)
Hepatitis A Virus Cellular Receptor 2/metabolism , Phosphatidylserines/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , T-Lymphocytes/metabolism , Antibodies/immunology , Apoptosis/genetics , Binding Sites , CD28 Antigens/metabolism , HEK293 Cells , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Interleukin-2/biosynthesis , Jurkat Cells , Ligands , Macrophages/metabolism , NF-kappa B/metabolism , Phosphorylation/genetics , Signal Transduction/immunology , Transfection
12.
Front Immunol ; 12: 656366, 2021.
Article in English | MEDLINE | ID: mdl-34149695

ABSTRACT

Amphioxus (e.g., Branchiostoma belcheri, Bb) has recently emerged as a new model for studying the origin and evolution of vertebrate immunity. Mammalian lymphocyte-specific tyrosine kinase (Lck) plays crucial roles in T cell activation, differentiation and homeostasis, and is reported to phosphorylate both the ITIM and ITSM of PD-1 to induce the recruitment of phosphatases and thus the inhibitory function of PD-1. Here, we identified and cloned the amphioxus homolog of human Lck. By generating and using an antibody against BbLck, we found that BbLck is expressed in the amphioxus gut and gill. Through overexpression of BbLck in Jurkat T cells, we found that upon TCR stimulation, BbLck was subjected to tyrosine phosphorylation and could partially rescue Lck-dependent tyrosine phosphorylation in Lck-knockdown T cells. Mass spectrometric analysis of BbLck immunoprecipitates from immunostimulants-treated amphioxus, revealed a BbLck-associated membrane-bound receptor LRR (BbLcLRR). By overexpressing BbLcLRR in Jurkat T cells, we demonstrated that BbLcLRR was tyrosine phosphorylated upon TCR stimulation, which was inhibited by Lck knockdown and was rescued by overexpression of BbLck. By mutating single tyrosine to phenylalanine (Y-F), we identified three tyrosine residues (Y539, Y655, and Y690) (3Y) of BbLcLRR as the major Lck phosphorylation sites. Reporter gene assays showed that overexpression of BbLcLRR but not the BbLcLRR-3YF mutant inhibited TCR-induced NF-κB activation. In Lck-knockdown T cells, the decline of TCR-induced IL-2 production was reversed by overexpression of BbLck, and this reversion was inhibited by co-expression of BbLcLRR but not the BbLcLRR-3YF mutant. Sequence analysis showed that the three tyrosine-containing sequences were conserved with the tyrosine-based inhibition motifs (ITIMs) or ITIM-like motifs. And TCR stimulation induced the association of BbLcLRR with tyrosine phosphatases SHIP1 and to a lesser extent with SHP1/2. Moreover, overexpression of wild-type BbLcLRR but not its 3YF mutant inhibited TCR-induced tyrosine phosphorylation of multiple signaling proteins probably via recruiting SHIP1. Thus, we identified a novel immunoreceptor BbLcLRR, which is phosphorylated by Lck and then exerts a phosphorylation-dependent inhibitory role in TCR-mediated T-cell activation, implying a mechanism for the maintenance of self-tolerance and homeostasis of amphioxus immune system and the evolutionary conservatism of Lck-regulated inhibitory receptor pathway.


Subject(s)
Costimulatory and Inhibitory T-Cell Receptors/metabolism , Lancelets/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Animals , Biomarkers , Cloning, Molecular , Costimulatory and Inhibitory T-Cell Receptors/genetics , Databases, Genetic , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Interleukin-2/biosynthesis , Jurkat Cells , Lancelets/genetics , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Phosphorylation , Rabbits , Receptors, Antigen, T-Cell/metabolism , Sequence Analysis, DNA , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
13.
Mol Med ; 27(1): 61, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34130625

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a representative systemic autoimmune disease. LncRNA H19 has been identified to participate in various biological processes in human diseases. However, the role of H19 in SLE remains unclear. METHODS: In this study, we first examined H19 expression in SLE patients by RT-qPCR and found that H19 expression was significantly upregulated in the serum and bone marrow-derived mesenchymal stem cells (BMMSCs) of SLE patients and positively associated with SLE disease activity index. We then performed gain-of-function and loss-of-function using mimic-H19 (H19-OE) and inhibitor-H19 (H19-KD) to examine the effects of H19 on BMMSC differentiation, proliferation, migration, and apoptosis using flow cytometry, DAPI staining, and migration and apoptosis assays. RESULTS: The results showed that H19 inhibited proliferation and migration but promoted apoptosis of BMMSCs, interfered with BMMSCs-mediated Treg cell proliferation and differentiation, and regulated BMMSCs-mediated Tfh/Treg cell balance. Dual-luciferase reporter assay confirmed the in silico prediction of interaction between H19 and IL-2. Furthermore, RT-qPCR showed that H19 directly inhibited IL-2 transcription in BMMSCs. ELISA showed that both active and total IL-2 protein levels were significantly lower in SLE BMMSCs. More importantly, we found that IL-2 significantly enhanced H19-OE-induced Treg cell differentiation and migration of BMMSCs, and these effects were reversed by anti-IL-2 antibody. CONCLUSION: Overall, our study indicates that LncRNA H19 induces immune dysregulation of BMMSCs, at least partly, by inhibiting IL-2 production and might be a novel therapeutic target for SLE.


Subject(s)
Gene Expression Regulation , Immunomodulation/genetics , Interleukin-2/biosynthesis , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , Apoptosis/genetics , Biomarkers , Case-Control Studies , Cell Differentiation/genetics , Cell Movement , Cells, Cultured , Coculture Techniques , Disease Susceptibility , Humans , Interleukin-2/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
14.
J Invest Dermatol ; 141(10): 2490-2498.e6, 2021 10.
Article in English | MEDLINE | ID: mdl-33857487

ABSTRACT

Licoricidin, the fifth-highest fraction among the isolated 48 molecules from Glycyrrhiza uralensis extracts, has been known as an anti-inflammatory bioactive molecule; however, few studies have shown its inhibitory effect on T-cell activation and atopic dermatitis (AD). This study examined the therapeutic potential of licoricidin in AD by modulating T-cell activation with molecular mechanisms. Licoricidin attenuated the expression of IL-2 mRNA in stimulated T cells without cytotoxicity. Because tyrosine-protein phosphatase nonreceptor type 1 was predicted to interact physically with licoricidin in T cells in silico analysis, the results of tyrosine-protein phosphatase nonreceptor type 1 activity assay and phosphorylation study predicted that licoricidin might abrogate the activity of tyrosine-protein phosphatase nonreceptor type 1 during T-cell activation. Pretreatment with licoricidin controlled the dephosphorylation of Lck on TCR-mediated stimulation. Moreover, licoricidin alleviated the symptoms of dinitrochlorobenzene- and/or mite extract-induced AD, including ear thickness and serum IgE level. Microscopic analysis also showed the effects of licoricidin on the thickness of the dermis and epidermis and infiltration of immune cells. Furthermore, mRNA levels of proinflammatory cytokines were attenuated in the ear lesions of licoricidin-treated AD mice. Therefore, licoricidin has therapeutic potential for treating AD, and its underlying mechanism involves effective modulation of T-cell activation by controlling tyrosine-protein phosphatase nonreceptor type 1 to maintain Lck phosphorylation.


Subject(s)
Benzopyrans/pharmacology , Dermatitis, Atopic/drug therapy , Lymphocyte Activation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , T-Lymphocytes/drug effects , Animals , Benzopyrans/therapeutic use , Cytokines/genetics , Dermatitis, Atopic/immunology , Female , Humans , Interleukin-2/biosynthesis , Jurkat Cells , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology
15.
J Chemother ; 33(3): 198-202, 2021 May.
Article in English | MEDLINE | ID: mdl-32930084

ABSTRACT

The aim of our study was to investigate the effects of metronomic vinorelbine (mVNR) in a tumor model of Lewis Lung (LL) cancer in immunocompetent C57BL/6 mice, looking at the plasma levels of interleukin-2 (IL-2) and interleukin-8 (IL-8). mVNR caused a concentration-dependent antiproliferative effect in vitro on LL/2 cells. The in vivo experiment showed the significant antitumor effects of mVNR at the dose of 4 mg/Kg and 5 mg/Kg, 3 times/week, and the significant dose-dependent decrease of IL-2 concentrations in plasma samples. Conversely, such an effect was not observed for IL-8. A significant decrease in microvessel density was also found at both the active mVNR doses. In conclusion, our study confirmed the activity of mVNR in an immunocompetent model of lung carcinoma and suggest multiple mechanisms of action, including the modulation of IL-2 levels.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Lewis Lung/drug therapy , Lung Neoplasms/drug therapy , Vinorelbine/administration & dosage , Vinorelbine/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Interleukin-2/biosynthesis , Interleukin-8/biosynthesis , Mice , Mice, Inbred C57BL , Random Allocation , Vinorelbine/adverse effects
16.
Cytokine ; 138: 155379, 2021 02.
Article in English | MEDLINE | ID: mdl-33271384

ABSTRACT

BACKGROUND: Blood has been the usual biological fluid for measuring analytes, but there is mounting evidence that saliva may be also useful for detecting cytokines in a noninvasive way. Thus, in this study we aimed to determine concentration of cytokines and other analytes in saliva from a population of healthy children. METHODS: We collected un-stimulated whole saliva samples from clinically healthy children, and concentration of 17 cytokines and 12 other analytes were measured in supernatants. All values were adjusted by albumin content and were log-transformed before multivariate statistical analysis. RESULTS: We included 114 children (53.5% females) between 6.0 and 11.9 years old. The highest concentrations (medians, pg/µg albumin) were seen for visfatin (183.70) and adiponectin (162.26) and the lowest for IL-13 and IL-2 (~0.003). Albumin concentration was associated with age (rS = 0.39, p < 0.001). In the multivariate analysis, five analytes (C peptide, ghrelin, GLP-1, glucagon, leptin) inversely correlated with age and positively with height-for-age. Age was also positively associated with PAI-1, while height-for-age was also positively associated with insulin and visfatin. Finally, BMI-for-age had a positive correlation with GM-CSF and insulin. CONCLUSIONS: Herein, we provided concentration values for 29 analytes in saliva from healthy children that may be useful as preliminary reference framework in the clinical research setting.


Subject(s)
Cytokines/metabolism , Saliva/metabolism , Adiponectin/biosynthesis , Age Factors , Body Height , C-Peptide/biosynthesis , Child , Cytokines/biosynthesis , Female , Ghrelin/biosynthesis , Glucagon/biosynthesis , Glucagon-Like Peptide 1/biosynthesis , Humans , Insulin/metabolism , Interleukin-13/biosynthesis , Interleukin-2/biosynthesis , Leptin/biosynthesis , Male , Multivariate Analysis , Nicotinamide Phosphoribosyltransferase/biosynthesis , Reference Values
17.
Clin Nutr ; 40(5): 3263-3278, 2021 05.
Article in English | MEDLINE | ID: mdl-33183881

ABSTRACT

BACKGROUND & AIMS: The micronutrient zinc is essential for proper immune function. Consequently, zinc deficiency leads to impaired immune function, as seen in decreased secretion of interleukin (IL)-2 by T cells. Although this association has been known since the late 1980s, the underlying molecular mechanisms are still unknown. Zinc deficiency and reduced IL-2 levels are especially found in the elderly, which in turn are prone to chronic diseases. Here, we describe a new molecular link between zinc deficiency and reduced IL-2 expression in T cells. METHODS: The effects of zinc deficiency were first investigated in vitro in the human T cell lines Jurkat and Hut-78 and complemented by in vivo data from zinc-supplemented pigs. A short- and long-term model for zinc deficiency was established. Zinc levels were detected by flow cytometry and expression profiles were investigated on the mRNA and protein level. RESULTS: The expression of the transcription factor cAMP-responsive-element modulator α (CREMα) is increased during zinc deficiency in vitro, due to increased protein phosphatase 2A (PP2A) activity, resulting in decreased IL-2 production. Additionally, zinc supplementation in vivo reduced CREMα levels causing increased IL-2 expression. On epigenetic levels increased CREMα binding to the IL-2 promoter is mediated by histone deacetylase 1 (HDAC1). The HDAC1 activity is inhibited by zinc. Moreover, deacetylation of the activating histone mark H3K9 was increased under zinc deficiency, resulting in reduced IL-2 expression. CONCLUSIONS: With the transcription factor CREMα a molecular link was uncovered, connecting zinc deficiency with reduced IL-2 production due to enhanced PP2A and HDAC1 activity.


Subject(s)
Cyclic AMP Response Element Modulator/immunology , Gene Expression/genetics , Gene Silencing , Interleukin-2/biosynthesis , T-Lymphocytes/immunology , Zinc/deficiency , Zinc/immunology , Animals , Cyclic AMP Response Element Modulator/genetics , Disease Models, Animal , Gene Expression/immunology , Humans , In Vitro Techniques , Interleukin-2/genetics , Interleukin-2/immunology , Swine
18.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212980

ABSTRACT

In immunological responses, controlling excessive T cell activity is critical for immunological homeostasis maintenance. Diketoacetonylphenalenone, derived from Hawaiian volcanic soil-associated fungus Penicillium herquei FT729, possesses moderate anti-inflammatory activity in RAW 264.7 cells but its immunosuppressive effect on T cell activation is unknown. In the present study, diketoacetonylphenalenone (up to 40 µM) did not show cytotoxicity in T cells. Western blot analysis showed treatment with diketoacetonylphenalenone did not alter the expression of anti-apoptotic proteins. Pretreatment with diketoacetonylphenalenone suppressed the interleukin-2 production in activated T cells induced by T cell receptor-mediated stimulation and PMA/A23187. The CFSE-proliferation assay revealed the inhibitory effect of diketoacetonylphenalenone on the proliferation of T cells. The expression of surface molecules on activated T cells was also reduced. We discovered the suppression of the TAK1-IKKα-NF-κB pathway by pretreatment with diketoacetonylphenalenone abrogated mitogen-activated protein kinase (MAPK) signaling in activated T cells. These results suggest that diketoacetonylphenalenone effectively downregulates T cell activity via the MAPK pathway and provides insight into the therapeutic potential of immunosuppressive reagents.


Subject(s)
Lymphocyte Activation/immunology , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Penicillium/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacology , Soil Microbiology , T-Lymphocytes/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Humans , I-kappa B Kinase/metabolism , Interleukin-2/biosynthesis , Jurkat Cells , Lymphocyte Activation/drug effects , MAP Kinase Kinase Kinases/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , T-Lymphocytes/drug effects
19.
Biochem Biophys Res Commun ; 529(1): 57-63, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32560819

ABSTRACT

Mucin-type O-glycosylation (hereafter referred to as O-GalNAc glycosylation) is one of the most abundant glycosylation on proteins. It is initiated by the members of polypeptide N-acetyl-α-galactosaminyltransferases (ppGalNAc-Ts) family. The ppGalNAc-Ts could be used as tool enzymes to modify target proteins including therapeutic glycoprotein drugs with O-GalNAc glycosylation at specific glycosylated sites in vitro. Obtaining a large amount of ppGalNAc-T can greatly increase the yield of therapeutic O-glycoprotein and reduce the culture costs. In this study, we reported a simple Escherichia coli (E. coli) expression system capable of producing human ppGalNAc-Ts. By co-expressing human PDI, we could simply obtain active ppGalNAc-Ts with high efficiency. Using the E. coli expressed ppGalNAc-T2, we site-specifically synthesized O-glycosylated IL-2 at the native glycosylated site Thr23 residue. These results reveal the E. coli system we constructed is suitable to produce active ppGalNAc-Ts and thus has the potential value for basic research and production of therapeutic O-glycoproteins in vitro.


Subject(s)
Interleukin-2/analogs & derivatives , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Amino Acid Sequence , Biocatalysis , Catalytic Domain/genetics , Disulfides/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glycosylation , Humans , Interleukin-2/biosynthesis , Interleukin-2/chemistry , Models, Molecular , N-Acetylgalactosaminyltransferases/chemistry , Plasmids/genetics , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Polypeptide N-acetylgalactosaminyltransferase
20.
Rheumatology (Oxford) ; 59(11): 3340-3349, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32306043

ABSTRACT

OBJECTIVES: SLE is an autoimmune disease characterized by aberrant autoantibody production and immune dysfunctions. Whether the anti-CMV immunity is impaired in SLE patients is poorly understood. We investigated the specific anti-viral T-cell response in SLE patients with CMV infection and its possible impacts on clinical manifestations in lupus. METHODS: CD28 null T-cell percentages were measured by flow cytometry in 89 SLE patients and 58 healthy controls. A specific anti-CMV CD8 T-cell response was assessed ex vivo by the production of intracellular cytokines in response to CMV phosphoprotein 65 (pp65) by flow cytometry. Clinical manifestations and immune parameters were analysed in SLE patients according to their CMV serostatus. RESULTS: CD28 null T cells were significantly expanded in SLE patients. When the anti-CMV pp65 CD8 polyfunctional T cell response was analysed, as defined by production of at least three of four functional cytokines or effectors (intracellular IFN-γ, IL-2, TNF-α and surface CD107a), the results demonstrated that it was not impaired in SLE patients. In contrast, when comparing clinical manifestations, there were lower anti-ds-DNA levels and decreased SLEDAI in SLE patients with CMV infection. Furthermore, the expansion of CD4+CD28 null T cells was negatively associated with anti-ds-DNA levels and SLEDAI in these lupus patients. CONCLUSION: In SLE patients with CMV infection, the specific anti-CMV CD8 T-cell response is preserved but is associated with decreased disease activity and lower anti-DNA levels among these patients, suggesting CMV infection may mitigate lupus activity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Lupus Erythematosus, Systemic/immunology , Viral Matrix Proteins/immunology , Adult , Antibodies, Viral/blood , Antibody Specificity , CD28 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Cytomegalovirus/immunology , Cytomegalovirus Infections/blood , DNA/immunology , Female , Flow Cytometry , Humans , Immunity, Cellular , Immunoglobulin G/blood , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/complications , Lymphocyte Activation , Lymphocytes, Null/immunology , Lysosomal-Associated Membrane Protein 1/biosynthesis , Male , Middle Aged , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...